Different Approaches to Semantic Web Service Composition

Thomas Weise, Steffen Bleul, Diana Comes, and Kurt Geihs
Distributed Systems Group
University of Kassel
Wilhelmshöher Allee 73
34121 Kassel
Email: {weise|bleul|comes|geihs}@vs.uni-kassel.de

Abstract—Semantic web service composition is about finding services from a repository that are able to accomplish a specified task if executed. The task is defined in a form of a composition request which contains a set of available input parameters and a set of wanted output parameters. Instead of the parameter values, concepts from an ontology describing their semantics are passed to the composition engine. The parameters of the services in the repository the composer works on are semantically annotated in the same way as the parameters in the request. The composer then finds a sequence of services, called a composition. If the input parameters given in the request are provided, the services of this sequence can subsequently be executed and will finally produce the wanted output parameters.

In this paper, three different approaches to semantic web service composition are formally defined and compared with each other: an uninformed search in form of an IDDFS algorithm, a greedy informed search based on heuristic functions, and a multi-objective genetic algorithm.

I. INTRODUCTION

The necessity for fast service composition systems is directly connected with the emergence of Service-Oriented Architectures (SOA). Today, companies rely on IT-architectures which are as flexible as their business strategy. The software of an enterprise must be able to adapt to changes in the business processes like accounting, billing, the workflows, and even in the office software. If external vendors, suppliers, or customers change, the interfaces to their IT systems must be newly created or modified too. Hence, the architecture of corporate software has to be built with the anticipation of changes and updates [1, 2].

A SOA is the ideal architecture for such systems [3, 4]. Service oriented architectures allow us to modularize the business logic and to implement it in the form of services accessible in a network. Services are building blocks for service processes which represent the workflows of an enterprise. They can be added, removed, and updated at runtime without interfering with the ongoing business. A SOA can be seen as a complex system with manifold services as well as n:m dependencies between services and applications:

- An application may need various service functionalities.
- Different applications may need the same service functionality.
- A certain functionality may be provided by multiple services.

Business now depends on the availability of service functionality, which is ensured by service management. Manual service management however becomes more and more cumbersome and ineffective with a rising number of relations between services and applications. Here, self-organization promises a solution for finding services that offer a specific functionality automatically.

Self-organizing approaches need a combination of syntactic and semantic service descriptions in order to decide whether a service provides a wanted functionality or not. Common syntactic definitions like WSDL [5] specify the order and types of service parameters and return values. Semantic interface description languages like OWL-S [6] or WSMO [7, 8] annotate these parameters with a meaning. While WSDL can be used to define a parameter myisbn of the type String, with OWL-S we can define that myisbn expects a String which actually contains an ISBN. Via a taxonomy we can now deduce that values which are annotated as either ISBN-10 or ISBN-13 can be passed to this service.

A wanted functionality is defined by a set of required output and available input parameters. A service offers this functionality if it can be executed with these available input parameters and its return values contain the needed output values. In order to find such services, the semantic concepts of their parameters are matched rather than their syntactic data types.

Many service management approaches employ semantic service discovery [9, 10, 11, 12]. Still, there is a substantial lack of research on algorithms and system design for fast response service discovery. This is especially the case in ser-

vice composition where service functionality is not necessarily provided by a single service. Instead, combinations of services (compositions) are discovered. The sequential execution of these services provides the requested functionality.

II. SEMANTIC SERVICE COMPOSITION

In order to discuss the idea of semantic service composition properly, we need some prerequisites. Therefore, let us initially define the set of all semantic concepts M. All concepts that exist in the knowledge base are members of M and can be represented as nodes in a wood of taxonomy trees.

Definition 1 (subsumes): Two concepts $A, B \in M$ can be related in one of four possible ways. We define the predicate $\text{subsumes} : (M \times M) \rightarrow \{\text{true}, \text{false}\}$ to express this relation as follows:

1) $\text{subsumes}(A, B)$ holds if and only if A is a generalization of B (i.e. B is then a specialization of A).
2) $\text{subsumes}(B, A)$ holds if and only if A is a specialization of B (i.e. B is then a generalization of A).
3) If neither $\text{subsumes}(A, B)$ nor $\text{subsumes}(B, A)$ holds, A and B are not related to each other.
4) $\text{subsumes}(A, B)$ and $\text{subsumes}(B, A)$ is true if and only if $A = B$.

The subsumes relation is transitive, and so are generalization and specialization.

If a parameter x of a service is annotated with A and a value y annotated with B is available, we can set $x = y$ and call the service only if $\text{subsumes}(A, B)$ holds (contravariance). This means that x expects less or equal information than given in y.

From the viewpoint of a composition algorithm, there is no need for a distinction between parameters and the annotated concepts. The set S contains all the services known to the registry. Each service $s \in S$ has a set of required input concepts $s.$in $\subseteq M$ and a set of output concepts $s.$out $\subseteq M$ which it will deliver on return. We can trigger a service if we can provide all of its input parameters.

Similarly, a composition request R always consists of a set of available input concepts $R.$in $\subseteq M$ and a set of requested output concepts $R.$out $\subseteq M$. A composition algorithm discovers a (topologically sorted) set of n services $S = \{s_1, s_2, \ldots, s_n\}$: $s_1, \ldots, s_n \in S$. As shown in 1, the first service (s_0) of a valid composition can be executed with instances of the input concepts $R.$in. Together with $R.$in, its outputs $(s_1.$out) are available for executing the next service (s_2) in S, and so on. The composition provides outputs that are either annotated with exactly the requested concepts $R.$out or with more specific ones (covariance). For each composition solving the request R, $\text{isGoal}(S)$ will hold:

$$
\text{isGoal}(S) \leftrightarrow \forall A \in s_1.$in \ \exists B \in R.$in : \text{subsumes}(A, B) \land \\
\forall A \in s_i.$in, i \in \{2, \ldots, n\} \\
\exists B \in R.$in \cup s_{i-1}.$out \cup \ldots \cup s_1.$out : \text{subsumes}(A, B) \land \\
\forall A \in R.$out \ \exists B \in s_1.$out \cup \ldots \cup s_n.$out \cup R.$in : \text{subsumes}(A, B)
$$

The search space that needs to be investigated in web service composition is the set of all possible permutations of all possible sets of services. Let us therefore define the operation promising which obtains the set of all services $s \in S$ that produce an output parameter annotated with the concept A (regardless of their inputs).

$$\forall s \in \text{promising}(A) \ \exists B \in s.$out : \text{subsumes}(A, B) \quad (2)$$

III. UNINFORMED APPROACHES – IDDFS

The most general and straightforward approach to web service composition is the uninformed search. Uninformed search algorithms do not make use of any information different from goal predicates as defined in 1. We can build such a composition algorithm based on iterative deepening depth-first search. It is only fast in finding solutions for small service repositories but optimal if the problem requires an exhaustive search.

Algorithm 1: $S = \text{IDDFSComposition}(R)$

Input: R the composition request
Data: maxDepth, depth the maximum and the current search depth
Data: in, out current parameter sets
Output: S a valid service composition solving R

begin

$maxDepth \leftarrow 2$
repeat

$S \leftarrow \text{dl_dfs}(R.$in, $R.$out, \emptyset, 1)
$maxDepth \leftarrow maxDepth + 1$
until $S \neq \emptyset$
dl_dfs(in, out, composition, depth)
begin

foreach $A \in \text{out}$ do

foreach $s \in \text{promising}(A)$ do

$\text{wanted} \leftarrow \text{out}$

if $\exists B \in \text{wanted}$ then

if $\exists C \in s.$out : $\text{subsumes}(B, C)$ then

$\text{wanted} \leftarrow \text{wanted} \setminus \{B\}$

foreach $D \in s.$in do

if $\exists E \in \text{in}$: $\text{subsumes}(D, E)$ then

$\text{wanted} \leftarrow \text{wanted} \cup \{D\}$

$\text{comp} \leftarrow s \circ \text{composition}$

if $\text{wanted} = \emptyset$ then

return comp
else

if $\text{depth} < \text{maxDepth}$ then $\text{comp} \leftarrow

\text{dl_dfs}(\text{in}$, wanted, comp, depth + 1)

if $\text{comp} \neq \emptyset$ then return comp

return \emptyset

end
builds a valid web service composition starting from the back. In each recursion, its internal helper method dl_dfs tests all elements A of the set wanted of yet unknown parameters. It then iterates over the set of all services s that can provide A. For every single s, wanted is recomputed. If it becomes the empty set \emptyset, we have found a valid composition and can return it. If dl_dfs is not able to find a solution within the maximum depth limit (which denotes the maximum number of services in the composition), it returns \emptyset. The loop in dl_dfs iteratively invokes dl_dfs by increasing the depth limit step by step, until a valid solution is found.

IV. AN (INFORMED) HEURISTIC APPROACH

The IDDFS algorithm just discussed is slow and memory consuming for bigger repositories since it does not utilize any additional information about the search space. If we use such information, we can increase the efficiency of the search remarkably. In an informed search, a heuristic c helps to decide which nodes are to be expanded next. If the heuristic is good, such algorithms may dramatically outperform uninformed strategies [13, 14]. As second composition method we therefore define a greedy algorithm that internally sorts the list of currently known candidate compositions in descending order according to a heuristic in form of a comparator function $c : 2^A \times 2^B \in \mathbb{R}$. The comparator function $c(S_1, S_2)$ will be below zero if S_1 seems to be closer to the solution than S_2 and greater than zero if S_2 is a more prospective candidate. Thus, the best elements will be at the end of the list X in 2.

We can easily derive different comparator functions for web service composition. In our experiments and real-world experiences, the function c_{comp} has proven to be most efficient. It combines the size of the set unsatisfied parameters $\forall A \in \text{wanted}(S) \Rightarrow \exists s \in S : A \in s.\text{in} \land A \notin \text{known}(S)$, the composition lengths, the number of satisfied parameters $\forall B \in \text{eliminated}(S) \Rightarrow \exists s \in S : B \in s.\text{in} \land B \in \text{known}(S)$, and the number of known concepts $\text{known}(S) = R.\text{in} \cup \forall s \in S.s.\text{out}$ as defined in 3.

First, it compares the number of wanted parameters. If a composition has no such unsatisfied concepts, it is a valid solution. If both, S_1 and S_2 are valid, the solution involving fewer services wins. If only one of them is complete, it also wins. Otherwise, both candidates still have unsatisfied concepts. Only if both of them have the same number of satisfied parameters, we again compare the wanted concepts. If their numbers are also equal, we prefer the shorter composition candidate. If even the compositions are of the same length, we finally base the decision of the total number of known concepts.

V. A GENETIC APPROACH

Evolutionary algorithms (EAs) [15, 14] are generic, population-based meta-heuristic optimization algorithms that use biology-inspired mechanisms like mutation, crossover, natural selection and survival of the fittest. The advantage of evolutionary algorithms compared to other optimization methods is that they make only few assumptions about the underlying fitness landscape and therefore perform consistently well in many different problem categories.

All evolutionary algorithms proceed in principle according to the scheme illustrated in 1:
1) Initially, a population of totally random individuals is created.
2) All of them are tested for their utility as solution.
3) Based on this evaluation, fitness values are assigned to them.
4) A subsequent selection process filters out the individuals with low fitness and allows those with good fitness to enter the mating pool with a higher probability.
5) In the reproduction phase, offspring is created by varying or combining solution candidates.

\begin{algorithm}
\caption{$r = c_{\text{comp}}(S_1, S_2)$}
\begin{algorithmic}[1]
\Input S_1, S_2 two composition candidates
\Output $r \in \mathbb{Z}$ indicating whether S_1 ($r < 0$) or S_2 ($r > 0$) should be expanded next
\begin{algorithmic}
\State $i_1 \leftarrow |\text{wanted}(S_1)|$
\State $i_2 \leftarrow |\text{wanted}(S_2)|$
\If{$i_1 = 0$} \Comment{if only S_1 is complete}
\If{$i_2 = 0$} \Comment{if both S_1 and S_2 are complete}
\State $r = |S_1| - |S_2|$
\Else \Comment{if S_2 is complete}
\State $r = -1$
\EndIf
\Else \Comment{if S_1 is complete}
\If{$i_2 = 0$} \Comment{if both S_1 and S_2 are complete}
\State $r = 1$
\Else \Comment{if S_2 is complete}
\If{$e_1 > e_2$} \Comment{if both S_1 and S_2 are complete}
\State $r = 1$
\Else \Comment{if S_2 is complete}
\If{$S_1 \neq S_2$} \Comment{if both S_1 and S_2 are complete}
\State $r = |S_1| - |S_2|$
\EndIf
\EndIf
\Else \Comment{if S_1 is complete}
\If{$S_1 \neq S_2$} \Comment{if both S_1 and S_2 are complete}
\State $r = |S_1| - |S_2|$
\EndIf
\EndIf
\EndIf
\EndIf
\EndAlgorithmic
\end{algorithmic}
\end{algorithm}
6) If the termination criterion is met, the evolution stops here. Otherwise, it continues at step 2.

For the reproduction of solution candidates, EAs employ two different operators:
- Mutation slightly modifies one existing individual and
- crossover combines two solution candidates, creating offspring with features of both.

A. An Evolutionary Composition Algorithm

In order to use an evolutionary algorithm to breed web service compositions, we first need to define a proper genome able to represent service sequences. A straightforward yet efficient way is to use (variable-length) strings of service identifiers which can be processed by standard genetic algorithms. Then, we also could apply standard creation, mutation, and crossover operators.

However, by specifying a specialized mutation operation we can make the search more efficient. This new operation either deletes the first service in S (via mutate_1) or adds a promising service to S (as done in mutate_2). Using the adjustable variable σ as a threshold we can determine whether the search should prefer growing or shrinking the solution candidates.

\[
\text{mutate}_1(S) \equiv \begin{cases}
\{s_2, s_3, \ldots, s_{|S|}\} & \text{if } |S| > 1 \\
S & \text{otherwise}
\end{cases} \tag{3}
\]

\[
\text{mutate}_2(S) \equiv s \oplus S : \ A \in \text{wanted}(S) \land s \in \text{promising}(A) \tag{4}
\]

\[
\text{mutate}(S) \equiv \begin{cases}
\text{mutate}_1(S) & \text{if random}()> \sigma \\
\text{mutate}_2(S) & \text{otherwise}
\end{cases} \tag{5}
\]

A new operation for building the initial random configurations can be defined as a sequence of mutate_2 invocations of random length. Initially, $\text{mutate}_2(\emptyset)$ will return a composition consisting of a single service that satisfies at least one parameter in R_{out}. We iteratively apply mutate_2 to its previous result a random number of times in order to create a new individual.

1) The Comparator Function and Pareto Optimization: As driving force for the evolutionary process we can reuse the comparator function c_{cmp} as specified as for the greedy search in 3 on the preceding page. It combines multiple objectives, putting pressure towards the direction of
- compositions which are complete,
- small compositions,
- compositions that resolve many unknown parameters, and
- compositions that provide many parameters.

On the other hand, we could as well separate these single aspects into different objective functions and apply the multi-objective Pareto optimization technique. This has the drawback that it spreads the pressure of the optimization process over the complete Pareto frontier.

Fig. 2 visualizes the multi-objective optimization problem “web service composition” by sketching a characteristic example for Pareto frontiers of several generations of an evolutionary algorithm. In 2, we concentrate on the two objectives composition size and number of wanted (unsatisfied) parameters. Obviously, we need to find compositions which are correct, i.e., where the latter objective is zero. On the other hand, an evolution guided only by this objective can (and will) produce compositions containing additional, useless invocations of services not related to the problem at all. The size objective is thus to be minimized.

In the example, the first five or so generations are not able to produce good compositions yet. We can observe that longer compositions tend to provide more parameters (and have thus a lower number of wanted parameters). In generation 20, the Pareto frontier is pushed farther forward and touches the abscissa – the first correct solution is found. In the generations to come, this solution is improved and useless service calls are successively removed, so the composition size decreases. There will be a limit, illustrated as generation 50, where the shortest compositions for all possible values of wanted are
found. From now on, the Pareto front cannot progress any further and the optimization process has come to a rest.

As you can see, pure Pareto optimization does not only seek for the best correct solution but also looks for the best possible composition consisting of only one service, for the best one with two service, with three services, and so on. This spreading of the population slows down the progress into the specific direction where wanted(S) decreases.

The comparator function c_{cmp} has proven to be more efficient in focusing the evolution on this part of the search space. The evolution driven by this function is superior in performance and hence, is used in our experiments.

B. Experimental Results

In Table I we illustrate the mean processing times that the different algorithms introduced in this report when applied multiple times to various composition tasks. The test sets are based on the international Web Service Challenge [16, 17, 18] and bases M and service registries S of different sizes, as well as a variety of composition lengths. We have repeated the experiments multiple times and noted the mean values. The times themselves are not so important, rather are the proportions and relations between them.

The IDDFS approach can only solve smaller problems and becomes infeasible very fast. When building simpler compositions though, it is about as fast as the heuristic approach, which was clearly dominating in all categories. On the downside, a heuristic may be misleading in some cases and could lead to a very long computation time in the worst case.

The genetic algorithm (population site 1024) was able to resolve all composition requests correctly for all knowledge bases and all registry sizes. It was able to build good solutions regardless how many services had to be involved in a valid solution (solution depth). In spite of this correctness, it always was a magnitude slower than the greedy search which provided the same level of correctness.

VI. RELATED WORK

A. SWSDS

SWSDS composition system [20, 21] can be used for both, syntactic and semantic matching by simply switching a so-called search index. SWSDS uses a composition algorithm similar to our uninformed IDDFS variant but extended with the constraint that each service is only considered one time to be part of a composition. This mitigates the weak performance of the uninformed search but trades in the guaranteed optimality of the result.

B. Zhang et al.

In their composition system [22], Zhang et al. utilize hash tables that map the service to their output and to their input parameters. Using these tables, both forward and backward service composition, can be performed based on breadth-first search. A backwards search (like in our own approach) successively finds services that provide unknown parameters until all wanted outputs are satisfied. Forward searching means that services that can be invoked with the known parameters are iteratively added to the composition until all wanted outputs can be generated. Zhang et al. made the experience that backward searching outperforms forward search. Since 2007, they apply heuristics based on the number of branches and parameters of service compositions [23].

C. USDL

The composition engine of Kona et al. is based on the **Universal Service-Semantics Description Language** (USDL). WSDL files in the service repository and the composition requests are transformed to USDL. After that, a composer written in Prolog can process and solve them [24]. In 2007, a first-order logic approach based on Constraint Logic Programming over finite domains (CLP(FD)) was used for solving the requests [25].

D. The SCE

The **Multiagent Web Service Composition Engine** (SCE) [26] consist of two primary architectural components: the Java Agent Development Framework\(^1\) (JADE) and a service description repository. Here, services as well as composition requests are represented by agents. These agents communicate with each other and solve the requests cooperatively. In general, AI-based approaches like USDL and SCE are slower than optimized problem specific methods like the greedy algorithm applied by us, as proved in the 2006/2007 Web Service Challenges.

\(^1\)http://jade.tilab.com/ [accessed 2007-10-21]
E. jUDDI+

jUDDI+ [27] is an extended version of the open source UDDI [28] implementation by the Apache Software Foundation. jUDDI+ does not focus on pure semantic matching, but is also able to cope with non-exact matching and effects duplication. Therefore, it uses the description logics based reasoner MaMaS-tng\(^4\). The connection to UDDI provides versatility but also brings overhead which slows down the composition system in direct comparisons to ours performed at the 2006/2007 WSCs.

VII. THE ADDO COMPOSITION SYSTEM

The composition algorithms discussed in this paper are utilized by the ADDOaction\(^5\) project, which allows business applications to perform semantic service discovery and composition. In [27], we presented the ADDOaction discovery and mediation system for Web Service integration. The system uses WSDL descriptions enriched with the Mediation Contract Extension (MECE). It is able to automatically generate the XSLT [29] documents necessary to convert the arbitrarily complex message formats used for the data exchange between the services. Furthermore, it also automatically discovers and integrates plugins needed for the message exchange where XSLT does not suffice. XSLT is, for instance, not able to convert between different data types or units like different currencies. This can only be performed by additional software components which can be added as plug-ins into the system at runtime. The ADDOaction system integrates the necessary plug-ins into the compositions and the mediation system is now able to provide transparent access to the service compositions exactly as specified in the composition request by the client application.

An application accesses the composition system illustrated in 4 by submitting a service request through its Web Service Interface and also provides the service descriptions and their semantic annotations in form of WSDL and XSD formatted files or OWL-S descriptions. These documents are parsed by a fast SAX-based Input Parser. The composition process itself is started by the Strategy Planner which allocates the system resources and chooses the composition algorithm that seems to be most appropriate for the given problem.

The software modules encapsulating the algorithms introduced in this paper have direct access to the Knowledge Base and to the Service Register. Although every algorithm and composition strategy is unique, they all work on the same data structures. One or more composition algorithms solve the composition challenge and pass the solution to a SAX-based Output Writer, a very fast XML output generator. The resulting document is then returned through the Web Service Interface.
promising caches its results. This caching is done in a way that is thread-safe on one hand and does not need any synchronization on the other. The same holds for all features of the knowledge base: multiple algorithms may run in parallel, using the same knowledge base without any synchronization-induced delay, race conditions or inconsistencies.

VIII. CONCLUSIONS

In this research work, we have formally defined and evaluated three different approaches for web service composition: an uninformed search, an informed search, and an evolutionary algorithm. The uninformed search proofed generally unfeasible for large service repositories. It can only provide a good performance if the resulting compositions are very short. However, in case that a request is sent to the composer which cannot be satisfied, even heuristic approaches have to test all valid service combinations and thus cannot be better than IDDFS.

In practical experiments based on the data sets of the Web Service Challenge, superior performance could be measured by utilizing problem-specific information encapsulated in a fine-tuned heuristic function to guide a greedy search. This approach is more efficient than the other two tested variants by a magnitude.

Evolutionary algorithms are much slower, but were also always able to provide correct results to all requests. To put it simple, the problem of semantic composition as defined in the context of the WSC [16] is not complicated enough to fully unleash the potential of EAs. Here, they cannot cope with the highly efficient heuristic used in the greedy search. We anticipate that, especially in practical applications, additional requirements will be imposed onto a service composition engine. Such requirements will include quality of service (QoS), the question for optimal parallelization, or the generation of complete BPEL [30] processes. In this case, heuristic search will most probably become insufficient but EAs will still be able to deliver good results.

REFERENCES

@inproceedings{WBCG2008ICIW,
 author = {Thomas Weise and Steffen Bleul and Diana Comes and Kurt Geihs},
 title = {Different Approaches to Semantic Web Service Composition},
 affiliation = {Distributed Systems Group,
 FB 16 -- Elektrotechnik und Informatik,
 University of Kassel,
 Wilhelmshöher Allee 73,
 34121 Kassel, Germany},
 booktitle = {Proceedings of The Third International Conference on Internet
 and Web Applications and Services, ICIW 2008},
 editor = {Abdelhamid Mellouk and Jun Bi and Guadalupe Ortiz and
 Dickson K. W. Chiu and Manuela Popescu},
 pages = {90--96},
 year = {2008},
 month = {jun},
 location = {Athens, Greece},
 publisher = {IEEE Computer Society Press},
 address = {Los Alamitos, CA, USA},
 note = {Product Number: E3163. BMS Part Number: CFP0816C-CDR.
 Library of Congress Number: 2008922600},
}